
GNU nano
a small and friendly text editor

version 2.9.8

Chris Allegretta

This manual documents the GNU nano editor.

This manual is part of the GNU nano distribution.

Copyright c© 1999-2009, 2014-2017 Free Software Foundation, Inc.

This document is dual-licensed. You may distribute and/or modify it under
the terms of either of the following licenses:

* The GNU General Public License, as published by the Free Software Foun-
dation, version 3 or (at your option) any later version. You should have re-
ceived a copy of the GNU General Public License along with this program.
If not, see http://www.gnu.org/licenses/.

* The GNU Free Documentation License, as published by the Free Software
Foundation, version 1.2 or (at your option) any later version, with no Invari-
ant Sections, no Front-Cover Texts, and no Back-Cover Texts. You should
have received a copy of the GNU Free Documentation License along with
this program. If not, see http://www.gnu.org/licenses/.

You may contact the author by e-mail: chrisa@asty.org

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
mailto:chrisa@asty.org

1

1 Introduction

GNU nano is a small and friendly text editor. Besides basic text editing,
nano offers many extra features, such as an interactive search-and-replace,
undo/redo, syntax coloring, smooth scrolling, auto-indentation, go-to-line-
and-column-number, feature toggles, file locking, backup files, and interna-
tionalization support.

The original goal for nano was to be a complete bug-for-bug emulation of
Pico. But currently the goal is to be as compatible as possible while offering a
superset of Pico’s functionality. See Chapter 9 [Pico Compatibility], page 30,
for more details on how nano and Pico differ.

Please report bugs via https://savannah.gnu.org/bugs/?group=nano.

https://savannah.gnu.org/bugs/?group=nano

2

2 Invoking

The usual way to invoke nano is:

nano [FILE]

But it is also possible to specify one or more options (see the next section),
and to edit several files in a row. Additionally, the cursor can be put on a
specific line of a file by adding the line number with a plus sign before the
filename, and even in a specific column by adding it with a comma. So a
more complete command synopsis is:

nano [OPTION]... [[+LINE[,COLUMN]|+,COLUMN] FILE]...

Normally, however, you set your preferred options in a nanorc file (see
Chapter 7 [Nanorc Files], page 15). And when using set positionlog (mak-
ing nano remember the cursor position when you close a file), you will rarely
need to specify a line number.

As a special case: when instead of a filename a dash is given, nano will
read data from standard input. This means you can pipe the output of a
command straight into a buffer, and then edit it.

3

3 Command-line Options

nano takes the following options from the command line:

-A
--smarthome

Make the Home key smarter. When Home is pressed anywhere
but at the very beginning of non-whitespace characters on a
line, the cursor will jump to that beginning (either forwards or
backwards). If the cursor is already at that position, it will jump
to the true beginning of the line.

-B
--backup When saving a file, back up the previous version of it, using the

current filename suffixed with a tilde (~).

-C directory
--backupdir=directory

Make and keep not just one backup file, but make and keep
a uniquely numbered one every time a file is saved — when
backups are enabled. The uniquely numbered files are stored in
the specified directory.

-D
--boldtext

Use bold text instead of reverse video text.

-E
--tabstospaces

Convert typed tabs to spaces.

-F
--multibuffer

Read a file into a new buffer by default.

-G
--locking

Enable vim-style file locking when editing files.

-H
--historylog

Save the last hundred search strings and replacement strings
and executed commands, so they can be easily reused in later
sessions.

-I
--ignorercfiles

Don’t look at the system’s nanorc file nor at the user’s nanorc.

Chapter 3: Command-line Options 4

-K
--rebindkeypad

Interpret the numeric keypad keys so that they all work properly.
You should only need to use this option if they don’t, as mouse
support won’t work properly with this option enabled.

-L
--nonewlines

Don’t automatically add a newline when a file does not end with
one.

-M
--trimblanks

Snip trailing whitespace from the wrapped line when automatic
hard-wrapping occurs or when text is justified.

-N
--noconvert

Disable automatic conversion of files from DOS/Mac format.

-O
--morespace

Use the blank line below the title bar as extra editing space.

-P
--positionlog

For the 200 most recent files, log the last position of the cursor,
and place it at that position again upon reopening such a file.

-Q "regex"
--quotestr="regex"

Set the regular expression for matching the quoting part
of a line, used when justifying. The default value is
"^([\t]*([#:>|}]|//))+". Note that \t stands for a literal
Tab character.

-R
--restricted

Restricted mode: don’t read or write to any file not specified
on the command line; don’t read any nanorc files nor history
files; don’t allow suspending nor spell checking; don’t allow a
file to be appended to, prepended to, or saved under a different
name if it already has one; and don’t use backup files. This
restricted mode is also accessible by invoking nano with any
name beginning with r (e.g. rnano).

-S
--smooth Enable smooth scrolling. Text will scroll line-by-line, instead of

the usual chunk-by-chunk behavior.

Chapter 3: Command-line Options 5

-T number
--tabsize=number

Set the displayed tab length to number columns. The value of
number must be greater than 0. The default value is 8.

-U
--quickblank

Do quick status-bar blanking: status-bar messages will disap-
pear after 1 keystroke instead of 25. Note that option -c
(--constantshow) overrides this.

-V
--version

Show the current version number and exit.

-W
--wordbounds

Detect word boundaries differently by treating punctuation
characters as parts of words.

-X "characters"
--wordchars="characters"

Specify which other characters (besides the normal alphanu-
meric ones) should be considered as parts of words. This over-
rides option -W (--wordbounds).

-Y name
--syntax=name

Specify the syntax to be used for highlighting. See Section 7.2
[Syntax Highlighting], page 20, for more info.

-a
--atblanks

When doing soft line wrapping, wrap lines at whitespace instead
of always at the edge of the screen.

-c
--constantshow

Constantly display the cursor position (line number, column
number, and character number) on the status bar. Note that
this overrides option -U (--quickblank).

-d
--rebinddelete

Interpret the Delete key differently so that both Backspace and
Delete work properly. You should only need to use this option
if Backspace acts like Delete on your system.

-g
--showcursor

Make the cursor visible in the file browser, putting it on the
highlighted item. Useful for braille users.

Chapter 3: Command-line Options 6

-h
--help Show a summary of command-line options and exit.

-i
--autoindent

Automatically indent a newly created line to the same number
of tabs and/or spaces as the previous line (or as the next line if
the previous line is the beginning of a paragraph).

-k
--cutfromcursor

Make the ’Cut Text’ command (normally ^K) cut from the cur-
rent cursor position to the end of the line, instead of cutting the
entire line.

-l
--linenumbers

Display line numbers to the left of the text area.

-m
--mouse Enable mouse support, if available for your system. When en-

abled, mouse clicks can be used to place the cursor, set the
mark (with a double click), and execute shortcuts. The mouse
will work in the X Window System, and on the console when
gpm is running. Text can still be selected through dragging by
holding down the Shift key.

-n
--noread Treat any name given on the command line as a new file. This

allows nano to write to named pipes: it will start with a blank
buffer, and will write to the pipe when the user saves the "file".
This way nano can be used as an editor in combination with for
instance gpg without having to write sensitive data to disk first.

-o directory
--operatingdir=directory

Set the operating directory. This makes nano set up something
similar to a chroot.

-p
--preserve

Preserve the ^Q (XON) and ^S (XOFF) sequences so data being
sent to the editor can be stopped and started.

-q
--quiet Obsolete option. Recognized but ignored.

-r number
--fill=number

Hard-wrap lines at column number (by inserting a newline char-
acter). If the given value is 0 or less, wrapping will occur at the

Chapter 3: Command-line Options 7

width of the screen minus the given amount, allowing the wrap-
ping width to vary along with the width of the screen if and
when it is resized. The default value is -8. This option conflicts
with -w (--nowrap); the last one given takes effect.

-s program
--speller=program

Use the given program to do spell checking and correcting. By
default, nano uses the command specified in the SPELL environ-
ment variable. If SPELL is not set, and --speller is not specified
either, then nano uses its own interactive spell corrector, which
requires the GNU spell program to be installed.

-t
--tempfile

Don’t ask whether to save a modified buffer when exiting with
^X, but assume yes. This option is useful when nano is used as
the composer of a mailer program.

-u

--unix Save a file by default in Unix format. This overrides nano’s
default behavior of saving a file in the format that it had. (This
option has no effect when you also use --noconvert.)

-v
--view Don’t allow the contents of the file to be altered. Note that this

option should NOT be used in place of correct file permissions
to implement a read-only file.

-w
--nowrap Don’t hard-wrap long lines at any length. This option conflicts

with -r (--fill); the last one given takes effect.

-x
--nohelp Expert Mode: don’t show the Shortcut List at the bottom of

the screen. This affects the location of the status bar as well, as
in Expert Mode it is located at the very bottom of the editor.

Note: When accessing the help system, Expert Mode is tem-
porarily disabled to display the help-system navigation keys.

-y
--afterends

Make Ctrl+Right stop at word ends instead of beginnings.

-z
--suspend

Enable the ability to suspend nano using the system’s suspend
keystroke (usually ^Z).

8

-$
--softwrap

Enable ’soft wrapping’. This will make nano attempt to display
the entire contents of any line, even if it is longer than the screen
width, by continuing it over multiple screen lines. Since $ nor-
mally refers to a variable in the Unix shell, you should specify
this option last when using other options (e.g. nano -wS$) or
pass it separately (e.g. nano -wS -$).

-b
-e
-f
-j Ignored, for compatibility with Pico.

9

4 Editor Basics

4.1 Entering Text
nano is a "modeless" editor. This means that all keystrokes, with the ex-
ception of Control and Meta sequences, enter text into the file being edited.

Characters not present on the keyboard can be entered in two ways:

• For characters with a single-byte code, pressing the Esc key twice and
then typing a three-digit decimal number (from 000 to 255) will make
nano behave as if you typed the key with that value.

• For any possible character, pressing M-V (Alt+V) and then typing a
six-digit hexadecimal number (starting with 0 or 1) will enter the cor-
responding Unicode character into the buffer.

For example, typing Esc Esc 2 3 4 will enter the character "ê" — useful
when writing about a French party. Typing M-V 0 0 2 2 c 4 will enter the
symbol "�", a little diamond.

4.2 Commands
Commands are given by using the Control key (Ctrl, shown as ^) or the
Meta key (Alt or Cmd, shown as M-).

• A control-key sequence is entered by holding down the Ctrl key and
pressing the desired key.

• A meta-key sequence is entered by holding down the Meta key (normally
the Alt key) and pressing the desired key.

If for some reason on your system the combinations with Ctrl or Alt
do not work, you can generate them by using the Esc key. A control-key
sequence is generated by pressing the Esc key twice and then pressing the
desired key, and a meta-key sequence by pressing the Esc key once and then
pressing the desired key.

4.3 The Cutbuffer
Text can be cut from a file, a whole line at a time, by using the ’Cut Text’
command (default key binding: ^K). The cut line is stored in the cutbuffer.
Consecutive strokes of ^K will add each cut line to this buffer, but a ^K after
any other keystroke will overwrite the entire cutbuffer.

The contents of the cutbuffer can be pasted back into the file with the
’Uncut Text’ command (default key binding: ^U).

A line of text can be copied into the cutbuffer (without cutting it) with
the ’Copy Text’ command (default key binding: M-6).

Chapter 4: Editor Basics 10

4.4 The Mark
Text can be selected by first ’setting the Mark’ (default key bindings: ^6
and M-A) and then moving the cursor to the other end of the portion to be
selected. The selected portion of text will be highlighted. This selection can
now be cut or copied in its entirety with a single ^K or M-6. Or the selection
can be used to limit the scope of a search-and-replace (^\) or spell-checking
session (^T).

On some terminals, it is also possible to select text by holding down
Shift together with the cursor keys. Such a selection is cancelled upon any
cursor movement where Shift isn’t held.

Cutting or copying selected text will toggle the mark off automatically.
If necessary, it can be toggled off manually with another ^6 or M-A.

4.5 Screen Layout
The default screen of nano consists of five areas. From top to bottom these
are: the title bar, a blank line, the edit window, the status bar, and two help
lines.

The title bar consists of three sections: left, center and right. The section
on the left displays the version of nano being used. The center section
displays the current filename, or "New Buffer" if the file has not yet been
named. The section on the right displays "Modified" if the file has been
modified since it was last saved or opened.

The status bar is the third line from the bottom of the screen. It shows
important and informational messages. Any error messages that occur from
using the editor will appear on the status bar. Any questions that are asked
of the user will be asked on the status bar, and any user input (search strings,
filenames, etc.) will be input on the status bar.

The two help lines at the bottom of the screen show some of the most
essential functions of the editor. These two lines are called the Shortcut List.

4.6 Search and Replace
One can search the current buffer for the occurrence of any string with the
Search command (default key binding: ^W). The default search mode is
forward, case-insensitive, and for literal strings. But one can search back-
wards by pressing M-B, search case sensitively with M-C, and interpret regular
expressions in the search string with M-R.

A regular expression in a search string always covers just one line; it
cannot span multiple lines. And when replacing (with ^\ or M-R) the re-
placement string cannot contain a newline (LF).

Chapter 4: Editor Basics 11

4.7 Using the Mouse
When mouse support has been configured and enabled, a single mouse click
places the cursor at the indicated position. Clicking a second time in the
same position toggles the mark. Clicking in the shortcut list executes the
selected shortcut. To be able to select text with the left button, or paste
text with the middle button, hold down the Shift key during those actions.

The mouse will work in the X Window System, and on the console when
gpm is running.

4.8 Limitations
Justifications (^J) are not yet covered by the general undo system. So after a
justification that is not immediately undone, earlier edits cannot be undone
any more. The workaround is, of course, to exit without saving.

The recording and playback of keyboard macros works correctly only on
a terminal emulator, not on a Linux console (VT), because the latter does
not by default distinguish modified from unmodified arrow keys.

12

5 Built-in Help

The built-in help system in nano is available by pressing ^G. It is fairly self-
explanatory. It documents the various parts of the editor and the available
keystrokes. Navigation is via the ^Y (Page Up) and ^V (Page Down) keys.
^X exits from the help system.

13

6 Feature Toggles

Toggles allow you to change on-the-fly certain aspects of the editor which
would normally be specified via command-line options. They are invoked
via Meta-key sequences (see Section 4.2 [Commands], page 9, for more info).
The following global toggles are available:

Backup Files
Meta-B toggles the -B (--backup) command-line option.

Constant Cursor Position Display
Meta-C toggles the -c (--constantshow) command-line option.

Multiple File Buffers
Meta-F toggles the -F (--multibuffer) command-line option.

Smart Home Key
Meta-H toggles the -A (--smarthome) command-line option.

Auto Indent
Meta-I toggles the -i (--autoindent) command-line option.

Cut From Cursor To End-of-Line
Meta-K toggles the -k (--cutfromcursor) command-line op-
tion.

Long-Line Wrapping
Meta-L toggles the -w (--nowrap) command-line option.

Mouse Support
Meta-M toggles the -m (--mouse) command-line option.

No Conversion From DOS/Mac Format
Meta-N toggles the -N (--noconvert) command-line option.

More Space For Editing
Meta-O toggles the -O (--morespace) command-line option.

Whitespace Display
Meta-P toggles the displaying of whitespace (see [Whitespace],
page 20).

Tabs To Spaces
Meta-Q toggles the -E (--tabstospaces) command-line option.

Smooth Scrolling
Meta-S toggles the -S (--smooth) command-line option.

Expert/No Help
Meta-X toggles the -x (--nohelp) command-line option.

Color Syntax Highlighting
Meta-Y toggles color syntax highlighting (if your nanorc defines
syntaxes — see Section 7.2 [Syntax Highlighting], page 20).

14

Suspension
Meta-Z toggles the -z (--suspend) command-line option.

Line Numbers
Meta-# toggles the -l (--linenumbers) command-line option.

Soft Wrapping
Meta-$ toggles the -$ (--softwrap) command-line option.

15

7 Nanorc Files

The nanorc files contain the default settings for nano. They should be in
Unix format, not in DOS or Mac format. During startup, nano will first
read the system-wide settings, from /etc/nanorc (the exact path might
be different), and then the user-specific settings, either from ~/.nanorc
or from $XDG_CONFIG_HOME/nano/nanorc or from .config/nano/nanorc,
whichever exists first.

A nanorc file accepts a series of "set" and "unset" commands, which can
be used to configure nano on startup without using command-line options.
Additionally, there are some commands to define syntax highlighting and to
rebind keys — see Section 7.2 [Syntax Highlighting], page 20, and Section 7.3
[Rebinding Keys], page 22. nano will read one command per line.

Options in nanorc files take precedence over nano’s defaults, and
command-line options override nanorc settings. Also, options that do not
take an argument are unset by default. So using the unset command is
only needed when wanting to override a setting of the system’s nanorc file
in your own nanorc. Options that take an argument cannot be unset.

Quotes inside string parameters don’t have to be escaped with back-
slashes. The last double quote in the string will be treated as its end. For
example, for the brackets option, ""’)>]}" will match ", ’,), >,], and }.

7.1 Settings
The supported settings in a nanorc file are:

set afterends
Make Ctrl+Right stop at word ends instead of beginnings.

set allow_insecure_backup
When backing up files, allow the backup to succeed even if its
permissions can’t be (re)set due to special OS considerations.
You should NOT enable this option unless you are sure you
need it.

set atblanks
When soft line wrapping is enabled, make it wrap lines at blank
characters (tabs and spaces) instead of always at the edge of the
screen.

set autoindent
Automatically indent a newly created line to the same number
of tabs and/or spaces as the previous line (or as the next line if
the previous line is the beginning of a paragraph).

set backup
When saving a file, back up the previous version of it, using the
current filename suffixed with a tilde (~).

Chapter 7: Nanorc Files 16

set backupdir "directory"
Make and keep not just one backup file, but make and keep
a uniquely numbered one every time a file is saved — when
backups are enabled with set backup or --backup or -B. The
uniquely numbered files are stored in the specified directory.

set backwards
Obsolete option. Recognized but ignored. ^Q is available to start
a backward search.

set boldtext
Use bold instead of reverse video for the title bar, status bar, key
combos, function tags, line numbers, and selected text. This can
be overridden by setting the options titlecolor, statuscolor,
keycolor, functioncolor, numbercolor, and selectedcolor.

set brackets "string"
Set the characters treated as closing brackets when justifying
paragraphs. This may not include blank characters. Only
closing punctuation (see set punct), optionally followed by the
specified closing brackets, can end sentences. The default value
is ""’)>]}".

set casesensitive
Do case-sensitive searches by default.

set constantshow
Constantly display the cursor position on the status bar. Note
that this overrides quickblank.

set cutfromcursor
Use cut-from-cursor-to-end-of-line by default, instead of cutting
the whole line. (The old form of this option, set cut, is depre-
cated.)

set errorcolor fgcolor,bgcolor
Use this color combination for the status bar when an error
message is displayed. See [set functioncolor], page 16, for
valid color names.

set fill number
Hard-wrap lines at column number number. If number is 0
or less, the maximum line length will be the screen width less
number columns. The default value is -8. This option conflicts
with nowrap; the last one given takes effect.

set functioncolor fgcolor,bgcolor
Use this color combination for the concise function descrip-
tions in the two help lines at the bottom of the screen. Valid
names for foreground and background color are: white, black,
blue, green, red, cyan, yellow, magenta, and normal — where

Chapter 7: Nanorc Files 17

normal means the default foreground or background color. The
name of the foreground color may be prefixed with bright. And
either fgcolor or ,bgcolor may be left out.

set historylog
Save the last hundred search strings and replacement strings
and executed commands, so they can be easily reused in later
sessions.

set keycolor fgcolor,bgcolor
Use this color combination for the shortcut key combos in
the two help lines at the bottom of the screen. See [set
functioncolor], page 16, for valid color names.

set linenumbers
Display line numbers to the left of the text area.

set locking
Enable vim-style lock-files for when editing files.

set matchbrackets "string"
Set the opening and closing brackets that can be found by
bracket searches. This may not include blank characters. The
opening set must come before the closing set, and the two sets
must be in the same order. The default value is "(<[{)>]}".

set morespace
Use the blank line below the title bar as extra editing space.

set mouse Enable mouse support, so that mouse clicks can be used to place
the cursor, set the mark (with a double click), or execute short-
cuts.

set multibuffer
When reading in a file with ^R, insert it into a new buffer by
default.

set noconvert
Don’t convert files from DOS/Mac format.

set nohelp
Don’t display the help lists at the bottom of the screen.

set nonewlines
When a file does not end with a newline, don’t automatically
add one.

set nopauses
Don’t pause between warnings at startup. This means that only
the last one will be visible (when there are multiple ones).

set nowrap
Don’t hard-wrap text at all. This option conflicts with fill;
the last one given takes effect.

Chapter 7: Nanorc Files 18

set numbercolor fgcolor,bgcolor
Use this color combination for line numbers. See [set
functioncolor], page 16, for valid color names.

set operatingdir "directory"
nano will only read and write files inside "directory" and its
subdirectories. Also, the current directory is changed to here,
so files are inserted from this directory. By default, the operating
directory feature is turned off.

set positionlog
Save the cursor position of files between editing sessions. The
cursor position is remembered for the 200 most-recently edited
files.

set preserve
Preserve the XON and XOFF keys (^Q and ^S).

set punct "string"
Set the characters treated as closing punctuation when justify-
ing paragraphs. This may not include blank characters. Only
the specified closing punctuation, optionally followed by closing
brackets (see set brackets), can end sentences. The default
value is "!.?".

set quickblank
Do quick status-bar blanking: status-bar messages will disap-
pear after 1 keystroke instead of 25. Note that constantshow
overrides this.

set quiet Obsolete option. Recognized but ignored.

set quotestr "regex"
The email-quote string, used to justify email-quoted paragraphs.
This is an extended regular expression. The default value is
"^([\t]*([#:>|}]|//))+". Note that \t stands for a literal
Tab character.

set rebinddelete
Interpret the Delete key differently so that both Backspace and
Delete work properly. You should only need to use this option
if Backspace acts like Delete on your system.

set rebindkeypad
Interpret the numeric keypad keys so that they all work properly.
You should only need to use this option if they don’t, as mouse
support won’t work properly with this option enabled.

set regexp
Do extended regular expression searches by default.

Chapter 7: Nanorc Files 19

set selectedcolor fgcolor,bgcolor
Use this color combination for selected text. See [set
functioncolor], page 16, for valid color names.

set showcursor
Put the cursor on the highlighted item in the file browser, to aid
braille users.

set smarthome
Make the Home key smarter. When Home is pressed anywhere
but at the very beginning of non-whitespace characters on a
line, the cursor will jump to that beginning (either forwards or
backwards). If the cursor is already at that position, it will jump
to the true beginning of the line.

set smooth
Use smooth scrolling by default.

set softwrap
Enable soft line wrapping for easier viewing of very long lines.

set speller "program"
Use the given program to do spell checking and correcting. See
[--speller], page 7, for details.

set statuscolor fgcolor,bgcolor
Use this color combination for the status bar. See [set
functioncolor], page 16, for valid color names.

set suspend
Allow nano to be suspended.

set tabsize number
Use a tab size of number columns. The value of number must
be greater than 0. The default value is 8.

set tabstospaces
Convert typed tabs to spaces.

set tempfile
Save automatically on exit, don’t prompt.

set titlecolor fgcolor,bgcolor
Use this color combination for the title bar. See [set
functioncolor], page 16, for valid color names.

set trimblanks
Remove trailing whitespace from wrapped lines when automatic
hard-wrapping occurs or when text is justified. (The old form
of this option, set justifytrim, is deprecated.)

set unix Save a file by default in Unix format. This overrides nano’s
default behavior of saving a file in the format that it had. (This
option has no effect when you also use set noconvert.)

Chapter 7: Nanorc Files 20

set view Disallow file modification.

set whitespace "string"
Set the two characters used to indicate the presence of tabs and
spaces. They must be single-column characters. The default
pair for a UTF-8 locale is "»·", and for other locales ">.".

set wordbounds
Detect word boundaries differently by treating punctuation
characters as part of a word.

set wordchars "string"
Specify which other characters (besides the normal alphanu-
meric ones) should be considered as parts of words. This over-
rides the option wordbounds.

7.2 Syntax Highlighting
Coloring the different syntactic elements of a file is done via regular expres-
sions (see the color command below). This is inherently imperfect, because
regular expressions are not powerful enough to fully parse a file. Neverthe-
less, regular expressions can do a lot and are easy to make, so they are a
good fit for a small editor like nano.

A separate syntax can be defined for each kind of file via the following
commands in a nanorc file:

syntax name ["fileregex" ...]
Start the definition of a syntax with this name. All subsequent
color and other such commands will be added to this syntax,
until a new syntax command is encountered.

When nano is run, this syntax will be automatically activated
if the current filename matches the extended regular expression
fileregex. Or the syntax can be explicitly activated by using the
-Y or --syntax command-line option followed by the name.

The default syntax is special: it takes no fileregex, and applies
to files that don’t match any syntax’s fileregex. The none syntax
is reserved; specifying it on the command line is the same as not
having a syntax at all.

header "regex" ...
If from all defined syntaxes no fileregex matched, then compare
this regex (or regexes) against the first line of the current file,
to determine whether this syntax should be used for it.

magic "regex" ...
If no fileregex matched and no header regex matched either,
then compare this regex (or regexes) against the result of query-
ing the magic database about the current file, to determine

Chapter 7: Nanorc Files 21

whether this syntax should be used for it. (This functional-
ity only works when libmagic is installed on the system and
will be silently ignored otherwise.)

linter program [arg ...]
Use the given program to do a syntax check on the current buffer.
(This overrides the speller function.)

formatter program [arg ...]
Use the given program to automatically reformat the text in the
current buffer — useful for a programming language like Go.
(This overrides the speller and linter functions.)

comment "string"
Use the given string for commenting and uncommenting lines. If
the string contains a vertical bar or pipe character (|), this des-
ignates bracket-style comments; for example, "/*|*/" for CSS
files. The characters before the pipe are prepended to the line
and the characters after the pipe are appended at the end of the
line. If no pipe character is present, the full string is prepended;
for example, "#" for Python files. If empty double quotes are
specified, the comment/uncomment functions are disabled; for
example, "" for JSON. The default value is "#".

color fgcolor,bgcolor "regex" ...
Display all pieces of text that match the extended regular expres-
sion "regex" with foreground color "fgcolor" and background
color "bgcolor", at least one of which must be specified. Valid
colors for foreground and background are: white, black, red,
blue, green, yellow, magenta, and cyan. You may use the prefix
"bright" to get a stronger color highlight for the foreground. If
your terminal supports transparency, not specifying a "bgcolor"
tells nano to attempt to use a transparent background.

icolor fgcolor,bgcolor "regex" ...
Same as above, except that the matching is case insensitive.

color fgcolor,bgcolor start="fromrx" end="torx"
Display all pieces of text whose start matches extended regu-
lar expression "fromrx" and whose end matches extended regu-
lar expression "torx" with foreground color "fgcolor" and back-
ground color "bgcolor", at least one of which must be specified.
This means that, after an initial instance of "fromrx", all text
until the first instance of "torx" will be colored. This allows
syntax highlighting to span multiple lines.

icolor fgcolor,bgcolor start="fromrx" end="torx"
Same as above, except that the matching is case insensitive.

Chapter 7: Nanorc Files 22

include "syntaxfile"
Read in self-contained color syntaxes from "syntaxfile". Note
that "syntaxfile" may contain only the above commands, from
syntax to icolor.

extendsyntax name command [arg ...]
Extend the syntax previously defined as "name" with another
command. This allows you to add a new color, icolor, header,
magic, comment, linter, or formatter command to an already
defined syntax — useful when you want to slightly improve a
syntax defined in one of the system-installed files (which nor-
mally are not writable).

7.3 Rebinding Keys
Key bindings can be changed via the following three commands in a nanorc
file:

bind key function menu
Rebinds key to function in the context of menu (or in all menus
where the function exists by using all).

bind key "string" menu
Makes key produce string in the context of menu (or in all
menus where the key exists when all is used). The string
can consist of text or commands or a mix of them. (To enter a
command into the string, precede its keystroke with M-V.)

unbind key menu
Unbinds key from menu (or from all menus where it exists by
using all).

The format of key should be one of:

^ followed by an ASCII character or the word "Space". Example: ^C.

M- followed by a ASCII character or the word "Space". Example: M-C.

F followed by a numeric value from 1 to 16. Example: F10.

Valid names for the function to be bound are:

help Invokes the help viewer.

cancel Cancels the current command.

exit Exits from the program (or from the help viewer or the file
browser).

writeout Writes the current buffer to disk, asking for a name.

savefile Writes the current file to disk without prompting.

Chapter 7: Nanorc Files 23

insert Inserts a file into the current buffer (at the current cursor posi-
tion), or into a new buffer when option multibuffer is set.

whereis Starts a forward search for text in the current buffer — or for
filenames matching a string in the current list in the file browser.

wherewas Starts a backward search for text in the current buffer.

searchagain
Repeats the last search command without prompting.

findprevious
As searchagain, but always in the backward direction.

findnext As searchagain, but always in the forward direction.

replace Interactively replaces text within the current buffer.

cut Cuts and stores the current line (or the marked region).

copytext Copies the current line (or the marked region) without deleting
it.

uncut Copies the currently stored text into the current buffer at the
current cursor position.

mark Sets the mark at the current position, to start selecting text.

cutwordleft
Cuts from the cursor position to the beginning of the preceding
word.

cutwordright
Cuts from the cursor position to the beginning of the next word.

cutrestoffile
Cuts all text from the cursor position till the end of the buffer.

curpos Shows the current cursor position: the line, column, and char-
acter positions.

wordcount
Counts the number of words, lines and characters in the current
buffer.

speller Invokes a spell-checking program (or linting program, or format-
ter program, if the active syntax defines such a thing).

justify Justifies the current paragraph. A paragraph is a group of con-
tiguous lines that, apart from possibly the first line, all have the
same indentation. The beginning of a paragraph is detected by
either this lone line with a differing indentation or by a preceding
blank line.

fulljustify
Justifies the entire current buffer.

Chapter 7: Nanorc Files 24

indent Indents (shifts to the right) the currently marked text.

unindent Unindents (shifts to the left) the currently marked text.

comment Comments or uncomments the current line or marked lines, us-
ing the comment style specified in the active syntax.

complete Completes the fragment before the cursor to a full word found
elsewhere in the current buffer.

left Goes left one position (in the editor or browser).

right Goes right one position (in the editor or browser).

up Goes one line up (in the editor or browser).

down Goes one line down (in the editor or browser).

scrollup Scrolls the viewport up one row (meaning that the text slides
down) while keeping the cursor in the same text position, if
possible.

scrolldown
Scrolls the viewport down one row (meaning that the text slides
up) while keeping the cursor in the same text position, if possi-
ble.

prevword Moves the cursor to the beginning of the previous word.

nextword Moves the cursor to the beginning of the next word.

home Moves the cursor to the beginning of the current line.

end Moves the cursor to the end of the current line.

beginpara
Moves the cursor to the beginning of the current paragraph.

endpara Moves the cursor to the end of the current paragraph.

prevblock
Moves the cursor to the beginning of the current or preceding
block of text. (Blocks are separated by one or more blank lines.)

nextblock
Moves the cursor to the beginning of the next block of text.

pageup Goes up one screenful.

pagedown Goes down one screenful.

firstline
Goes to the first line of the file.

lastline Goes to the last line of the file.

gotoline Goes to a specific line (and column if specified). Negative num-
bers count from the end of the file (and end of the line).

Chapter 7: Nanorc Files 25

findbracket
Moves the cursor to the bracket (brace, parenthesis, etc.) that
matches (pairs) with the one under the cursor.

prevbuf Switches to editing/viewing the previous buffer when multiple
buffers are open.

nextbuf Switches to editing/viewing the next buffer when multiple
buffers are open.

verbatim Inserts the next keystroke verbatim into the file.

tab Inserts a tab at the current cursor location.

enter Inserts a new line below the current one.

delete Deletes the character under the cursor.

backspace
Deletes the character before the cursor.

recordmacro
Starts the recording of keystrokes — the keystrokes are stored
as a macro. When already recording, the recording is stopped.

runmacro Replays the keystrokes of the last recorded macro.

undo Undoes the last performed text action (add text, delete text,
etc).

redo Redoes the last undone action (i.e., it undoes an undo).

refresh Refreshes the screen.

suspend Suspends the editor (if the suspending function is enabled, see
the "suspendenable" entry below).

casesens Toggles case sensitivity in searching (search/replace menus
only).

regexp Toggles whether searching/replacing is based on literal strings
or regular expressions.

backwards
Toggles whether searching/replacing goes forward or backward.

prevhistory
Shows the previous history entry in the prompt menus (e.g.
search).

nexthistory
Shows the next history entry in the prompt menus (e.g. search).

flipreplace
Toggles between searching for something and replacing some-
thing.

Chapter 7: Nanorc Files 26

flipgoto Toggles between searching for text and targeting a line number.
(The form gototext is deprecated.)

flipexecute
Toggles between inserting a file and executing a command.

flippipe When executing a command, toggles whether the current buffer
(or marked region) is piped to the command.

flipnewbuffer
Toggles between inserting into the current buffer and into a new
empty buffer.

dosformat
When writing a file, switches to writing a DOS format (CR/LF).

macformat
When writing a file, switches to writing a Mac format.

append When writing a file, appends to the end instead of overwriting.

prepend When writing a file, ’prepends’ (writes at the beginning) instead
of overwriting.

backup When writing a file, creates a backup of the current file.

discardbuffer
When about to write a file, discard the current buffer without
saving. (This function is bound by default only when option
--tempfile is in effect.)

browser Starts the file browser, allowing to select a file from a list.

gotodir Goes to a directory to be specified, allowing to browse anywhere
in the filesystem.

firstfile
Goes to the first file when using the file browser (reading or
writing files).

lastfile Goes to the last file when using the file browser (reading or
writing files).

nohelp Toggles the presence of the two-line list of key bindings at the
bottom of the screen.

constantshow
Toggles the constant display of the current line, column, and
character positions. (The form constupdate is deprecated.)

morespace
Toggles the presence of the blank line that ’separates’ the title
bar from the file text.

Chapter 7: Nanorc Files 27

smoothscroll
Toggles smooth scrolling (when moving around with the arrow
keys).

softwrap Toggles the displaying of overlong lines on multiple screen lines.

linenumbers
Toggles the display of line numbers in front of the text.

whitespacedisplay
Toggles the showing of whitespace.

nosyntax Toggles syntax highlighting.

smarthome
Toggles the smartness of the Home key.

autoindent
Toggles whether a newly created line will contain the same
amount of leading whitespace as the preceding line — or as the
next line if the preceding line is the beginning of a paragraph.

cutfromcursor
Toggles whether cutting text will cut the whole line or just from
the current cursor position to the end of the line. (The form
cuttoend is deprecated.)

nowrap Toggles whether long lines will be hard-wrapped to the next line.

tabstospaces
Toggles whether typed tabs will be converted to spaces.

backupfile
Toggles whether a backup will be made of the file to be edited.

multibuffer
Toggles whether a file is inserted into the current buffer or read
into a new buffer.

mouse Toggles mouse support.

noconvert
Toggles automatic conversion of files from DOS/Mac format.

suspendenable
Toggles whether the suspend shortcut (normally ^Z) will sus-
pend the editor.

Valid names for menu are:

main The main editor window where text is entered and edited.

search The search menu (AKA whereis).

replace The ’search to replace’ menu.

28

replacewith
The ’replace with’ menu, which comes up after ’search to re-
place’.

gotoline The ’goto line (and column)’ menu.

writeout The ’write file’ menu.

insert The ’insert file’ menu.

extcmd The menu for inserting output from an external command,
reached from the insert menu.

help The help-viewer menu.

spell The interactive spell checker Yes/no menu.

linter The linter menu.

browser The file browser, for choosing a file to read from or write to.

whereisfile
The ’search for a file’ menu in the file browser.

gotodir The ’go to directory’ menu in the file browser.

all A special name that encompasses all menus. For bind it means
all menus where the specified function exists; for unbind it
means all menus where the specified key exists.

29

8 The File Browser

When in the Read-File (^R) or Write-Out menu (^O), pressing ^T will invoke
the file browser. Here, one can navigate directories in a graphical manner in
order to find the desired file.

Basic movement in the file browser is accomplished with the arrow and
other cursor-movement keys. More targeted movement is accomplished by
searching, via ^W or w, or by changing directory, via ^_ or g. The behavior
of the Enter key (or s) varies by what is currently selected. If the currently
selected object is a directory, the file browser will enter and display the
contents of the directory. If the object is a file, this filename and path are
copied to the status bar, and the file browser exits.

30

9 Pico Compatibility

nano attempts to emulate Pico as closely as possible, but there are some
differences between the editors:

Interactive Replace
Instead of allowing you to replace either just one occurrence of a
search string or all of them, nano’s replace function is interactive:
it will pause at each found search string and query whether to
replace this instance. You can then choose Yes, or No (skip
this one), or All (don’t ask any more), or Cancel (stop with
replacing).

Search and Replace History
When the option -H or --historylog is given (or set in the a
nanorc file), text entered as search or replace strings is stored.
These strings can be accessed with the up/down arrow keys,
or you can type the first few characters and then use Tab to
cycle through the matching strings. A retrieved string can sub-
sequently be edited.

Position History
When the option -P or --positionlog is given (or set in a
nanorc file), nano will store the position of the cursor when you
close a file, and will place the cursor in that position again when
you later reopen the file.

Current Cursor Position
The output of the "Display Cursor Position" command (^C)
displays not only the current line and character position of the
cursor, but also (between the two) the current column position.

Hard-Wrapping
By default, nano hard-wraps lines at screen width minus eight
columns, whereas Pico does it at screen width minus six columns.
You can make nano do the same as Pico by using --fill=-6.

Spell Checking
In the internal spell checker misspelled words are sorted alpha-
betically and trimmed for uniqueness, such that the words ’ap-
ple’ and ’Apple’ will be prompted for correction separately.

Writing Selected Text to Files
When using the Write-Out key (^O), text that has been selected
using the marking key (^^) can not just be written out to a new
(or existing) file, it can also be appended or prepended to an
existing file.

Reading Text from a Command
When using the Read-File key (^R), nano can not just read a
file, it can also read the output of a command to be run (^X).

Chapter 9: Pico Compatibility 31

Reading from Working Directory
By default, Pico will read files from the user’s home directory
(when using ^R), but it will write files to the current working
directory (when using ^O). nanomakes this symmetrical: always
reading from and writing to the current working directory — the
directory that nano was started in.

File Browser
In the file browser, nano does not implement the Add, Copy,
Rename, and Delete commands that Pico provides. In nano the
browser is just a file browser, not a file manager.

Toggles Many options which alter the functionality of the program can
be "toggled" on or off using Meta key sequences, meaning the
program does not have to be restarted to turn a particular fea-
ture on or off. See Chapter 6 [Feature Toggles], page 13, for a
list of options that can be toggled. Or see the list at the end of
the main internal help text (^G) instead.

32

10 Building and Configure Options

Building nano from source is fairly straightforward if you are familiar with
compiling programs with autoconf support:

tar xvzf nano-x.y.z.tar.gz
cd nano-x.y.z
./configure
make
make install

The possible options to ./configure are:

--disable-browser
Disable the mini file browser that can be called with ^T when
reading or writing files.

--disable-color
Disable support for the syntax coloring of files. This also elimi-
nates the -Y command-line option, which chooses a specific syn-
tax.

--disable-comment
Disable the single-keystroke comment/uncomment function (M-
3).

--disable-extra
Disable the Easter egg: a crawl of major contributors.

--disable-help
Disable the help function. Doing this makes the binary much
smaller, but makes it difficult for new users to learn more than
very basic things about using the editor.

--disable-histories
Disable the code for the handling of the history files: the search
and replace strings that were used, and the cursor position
at which each file was closed. This also eliminates the -H
and -P command-line options, which switch on the logging of
search/replace strings and cursor positions.

--disable-justify
Disable the justify and unjustify functions.

--disable-libmagic
Disable the use of the library of magic-number tests (for deter-
mining the file type and thus which syntax to use for colouring
— often the tests on filename extension and header line will be
enough).

Chapter 10: Building and Configure Options 33

--disable-linenumbers
Disable the line-numbering function (M-#). This also eliminates
the -l command-line option, which turns line numbering on.

--disable-mouse
Disable all mouse functionality. This also eliminates the -m
command-line option, which enables the mouse functionality.

--disable-multibuffer
Disable support for opening multiple files at a time and switching
between them on the fly. This also eliminates the -F command-
line option, which causes a file to be read into a separate buffer
by default.

--disable-nanorc
Disable support for reading the nanorc files at startup. With
such support, you can store custom settings in a system-wide
and a per-user nanorc file rather than having to pass command-
line options to get the desired behavior. See Chapter 7 [Nanorc
Files], page 15, for more info. Disabling this also eliminates the
-I command-line option, which inhibits the reading of nanorc
files.

--disable-operatingdir
Disable setting the operating directory. This also eliminates the
-o command-line option, which sets the operating directory.

--disable-speller
Disable use of the spell checker. This also eliminates the -s
command-line option, which allows specifying an alternate spell
checker.

--disable-tabcomp
Disable tab completion (when nano asks for a filename or a
search string).

--disable-wordcomp
Disable word completion (^]).

--disable-wrapping
Disable all hard-wrapping of overlong lines. This also eliminates
the -w command-line option, which switches long-line wrapping
off.

--enable-tiny
This option implies all of the above. It also disables some other
internals of the editor, like the marking code, the cut-to-end-
of-line code, and the function toggles. By using the enabling
counterpart of the above options together with --enable-tiny,
specific features can be switched back on — but a few cannot.

Chapter 10: Building and Configure Options 34

--enable-debug
Enable support for runtime debug output. This can get pretty
messy, so chances are you only want this feature when you’re
working on the nano source.

--disable-nls
Disables Native Language support. This will disable the use of
any available GNU nano translations.

--disable-wrapping-as-root
Disable hard-wrapping of overlong lines by default when nano is
run as root.

--enable-utf8
Enable support for reading and writing Unicode files. This will
require either a wide version of curses, or a UTF-8-enabled ver-
sion of Slang.

--disable-utf8
Disable support for reading and writing Unicode files. Normally
the configure script auto-detects whether to enable UTF-8 sup-
port or not. You can use this or the previous option to override
that detection.

--enable-altrcname=name
Use the file with the given name (in the user’s home directory)
as nano’s settings file, instead of the default .nanorc.

--with-slang
Compile nano against Slang instead of against ncurses or other
curses libraries.

i

Table of Contents

1 Introduction . 1

2 Invoking . 2

3 Command-line Options . 3

4 Editor Basics . 9
4.1 Entering Text . 9
4.2 Commands . 9
4.3 The Cutbuffer . 9
4.4 The Mark . 10
4.5 Screen Layout . 10
4.6 Search and Replace . 10
4.7 Using the Mouse . 11
4.8 Limitations . 11

5 Built-in Help . 12

6 Feature Toggles . 13

7 Nanorc Files . 15
7.1 Settings . 15
7.2 Syntax Highlighting . 20
7.3 Rebinding Keys . 22

8 The File Browser . 29

9 Pico Compatibility . 30

10 Building and Configure Options 32

	Introduction
	Invoking
	Command-line Options
	Editor Basics
	Entering Text
	Commands
	The Cutbuffer
	The Mark
	Screen Layout
	Search and Replace
	Using the Mouse
	Limitations

	Built-in Help
	Feature Toggles
	Nanorc Files
	Settings
	Syntax Highlighting
	Rebinding Keys

	The File Browser
	Pico Compatibility
	Building and Configure Options

